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SUMMARY
The ‘‘inactive’’ Xchromosome (Xi) hasbeenassumed tohave little impact, in trans, on the ‘‘active’’ X (Xa). To test
this, we quantified Xi and Xa gene expression in individuals with one Xa and zero to three Xis. Our linear
modeling revealed modular Xi and Xa transcriptomes and significant Xi-driven expression changes for 38%
(162/423) of expressedXchromosomegenes.By integratingallele-specificanalyses,we found thatmodulation
of Xa transcript levels by Xi contributes to many of these Xi-driven changes (R121 genes). By incorporating
metrics of evolutionary constraint, we identified 10 X chromosome genes most likely to drive sex differences
in common disease and sex chromosome aneuploidy syndromes. We conclude that human X chromosomes
are regulated both in cis, through Xi-wide transcriptional attenuation, and in trans, through positive or negative
modulation of individual Xa genes by Xi. The sum of these cis and trans effects differs widely among genes.
INTRODUCTION

The X chromosome of eutherian mammals exists in two distinct

epigenetic states that are referred to as ‘‘active’’ (Xa) and ‘‘inac-

tive’’ (Xi).1–3 The ‘‘n�1’’ rule (where n is the number of X chromo-

somes per cell) states that all diploid human somatic cells

possess one X chromosome in the active state (Xa), while all

other (i.e., n�1) copies of chromosome (Chr) X4 are transcription-

ally repressed through a mechanism known as X chromosome

inactivation (XCI). Despite the name, Xi is functionally active,

making critical contributions to human fitness and viability. For

example, 99% of fetuses with only one sex chromosome (45,X)

abort spontaneously, suggesting that viability hinges on gene

expression from a second sex chromosome—either Xi or Y.5,6

The rare survivors likely have a mixture of 45,X cells and cells

with a second sex chromosome, and they display a constellation

of anatomic features known as Turner syndrome.7,8
This is an open access article und
Studies have revealed that as many as a quarter of X-linked

genes are expressed from Xi in humans; such genes are said

to ‘‘escape’’ X inactivation.9 Early studies demonstrated the

expression of certain Chr X genes on Xi (‘‘escape’’) in human-ro-

dent hybrid cell lines that had retained human Xi but had lost hu-

man Xa (for example, Mohandas et al., 1980; Brown et al., 1997;

and Carrel et al., 1999).10–12 Subsequent allele-specific methods

distinguished transcripts from Xa and Xi in human cell lines that

exhibited skewed XCI or in single cells.13–18 While conceptually

superior to hybrid cell lines, allele-specific methods yielded

sparse data because they require the presence of heterozygous

single-nucleotide polymorphisms (SNPs) to differentiate be-

tween alleles. Other studies approximated the contributions of

Xi to X-linked gene expression by comparing samples with vary-

ing Xi copy numbers: in some cases, between 46,XY and 46,XX

samples, and in others, between sex chromosome aneuploid

and euploid samples.15,19–26 These studies employed analytic
Cell Genomics 3, 100259, February 8, 2023 ª 2023 The Authors. 1
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Figure 1. Gene expression analysis of cells from across the spectrum of sex chromosome constitution

(A) Collection and processing of samples from individuals with variation in sex chromosome constitution.

(B) Schematic of the sex chromosomes featuring the X-Y-shared pseudoautosomal regions, PAR1 and PAR2, and the diverged regions, NPX and NPY.

(C) Linear modeling strategy for analyzing RNA-seq data from individuals with one to four copies of Chr X (zero to three copies of Xi).

See also Table S1.
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methods that made it difficult to separate the effect of Xi copy

number from the potentially confounding effects of correlated

factors such as Chr Y copy number, hormonal differences, or tis-

sue composition. More importantly—as underscored by this

study—previous work assumed, without directly testing, the in-

dependence and additivity of Xi and Xa expression. In particular,

these studies assumed that any increase in expression observed

with additional copies of Xi was due to expression from Xi,

which may not always be the case. Given these limitations, we

hypothesized that revisiting Xi gene expression with alternative

experimental and analytic methods would reveal new insights.

Here, we used a series of quantitative approaches to investi-

gate gene expression from Xi and Xa. Inspired by previous

studies, we took advantage of the natural occurrence of diverse

sex chromosome aneuploidies in the human population. We

performed RNA sequencing (RNA-seq) on two cell types

(lymphoblastoid cell lines and primary skin fibroblasts) from

176 individuals spanning 11 different sex chromosome constitu-

tions—from 45,X (Turner syndrome) to 49,XXXXY. We analyzed

the resulting data from these 176 individuals using linear regres-

sion models to identify significant changes in Chr X gene expres-

sion in identically cultured cells with zero, one, two, or three

copies of Xi. 38% of Chr X genes displayed significant Xi-driven

expression changes, which we quantified on a gene-by-gene

basis using a novel metric that we developed called DEX. By

combining DEX findings with allele-specific analyses performed

in the same cell lines and comparing our results with published,

independent annotations of genes subject to XCI, we found that

Xi positively or negatively modulates steady-state levels of tran-

scripts of at least 121 genes on Xa, in trans. Thus, Xi and Xa

expression are highly interdependent. By combining DEX with

published gene-wise metrics of evolutionary constraint, we iden-

tified a set of 10 Chr X genes most likely to drive phenotypes that

are associated with natural variation in Xi copy number. These 10

candidate ‘‘drivers’’ can now be prioritized in studies of sex dif-

ferences in common disease and in explorations of sex

chromosome aneuploidy syndromes.
2 Cell Genomics 3, 100259, February 8, 2023
RESULTS

Sampling gene expression across sex chromosome
constitutions
To conduct a robust, quantitative analysis of Xi’s impacts on

X-linked gene expression, we recruited individuals with a wide

range of sex chromosome constitutions to provide blood sam-

ples and/or skin biopsies (Figure 1A). We generated or received

Epstein Barr virus-transformed B cell lines (lymphoblastoid cell

lines [LCLs]) and/or primary dermal fibroblast cultures from 176

individuals with one to four X chromosomes and zero to four Y

chromosomes. After culturing cells under identical conditions,

we profiled gene expression by RNA-seq in LCLs from 106

individuals and fibroblast cultures from 99 individuals (some

individuals contributed both blood and skin samples; Tables 1

and S1). To enable analysis at both the gene and transcript iso-

form levels, we generated 100-bp paired-end RNA-seq reads to

a median depth of 74 million reads per sample. A resampling

(bootstrapping) analysis of our dataset indicated that including

more individuals with sex chromosome aneuploidy would only

marginally increase the number of differentially expressed genes

detected in our analyses (Figure S1; STAR Methods).

A metric for the impact of Xi on gene expression
To leverage the full power of our datasets, we compiled all RNA-

seq data for each cell type into a single analysis. We included

protein-coding and well-characterized long non-coding RNA

(lncRNA) genes with a median expression in either 46,XX or

46,XY samples of at least 1 transcript per million (TPM). This re-

sulted in 357 Chr X genes expressed in LCLs and 393 expressed

in fibroblasts. Combining these two gene lists, we analyzed 423

Chr X genes in all. These genes reside within structurally and

evolutionarily distinct regions (Figure 1B): two pseudoautosomal

regions (PAR1 and PAR2), which are identical in sequence

between Chr X and Y, and the non-pseudoautosomal region of

the X (NPX), which has diverged in structure and gene content

from the non-pseudoautosomal region of the Y (NPY).27,28



Table 1. Samples included in sex chromosome aneuploidy

analysis

Karyotype # LCLs # Fibroblast cultures

45,X 17 23

46,XX 22 20

46,XY 17 14

47,XXX 7 4

47,XXY 11 30

47,XYY 10 5

48,XXXX 1 0

48,XXXY 4 1

48,XXYY 3 0

49,XXXXY 12 1

49,XYYYY 2 1

Total: 106 99
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Despite this divergence, 17 homologous ‘‘NPX-NPY pair genes’’

with varying degrees of X-Y similarity in sequence and function

remain.27,29

We hypothesized that each copy of Xi would incrementally in-

crease expression of some Chr X genes, and therefore, for each

gene, we modeled expression as a linear function of Xi copy

number, controlling for Chr Y copy number and batch (Figure 1C;

STAR Methods). To assess whether expression of each Chr X

gene changed linearly per Xi, we fit non-linear least square

regression models to the expression data using power functions

(STAR Methods). Most NPX and PAR1 genes previously anno-

tated as escaping XCI were best fit by linear models in which

expression increases by a fixed amount per Xi, while most genes

previously annotated as subject to XCI were best fit by models

with no change in expression per Xi (Figure S2; see STAR

Methods for the derivation of XCI status annotations from pub-

lished studies). These results validate the ‘‘n�1’’ rule at the tran-

scriptomic level, indicating that each cell has a single copy of Xa

and n�1 copies of Xi. Moreover, linear modeling revealed that

contributions by Xi to Chr X gene expression are strikingly

modular, meaning that each Xi is more or less equivalent.

Linear models allowed us to identify genes whose expression

changed significantly with additional copies of Xi and to quantify

the absolute changes in expression (i.e., changes in read counts

per Xi). To compare genes expressed at different levels, we also

quantified the relative changes in expression per Xi. Specifically,

we divided the change in expression per Xi (slope of regression,

bX) by the expression from the single Xa (average intercept

across batches, b0)—a metric we refer to as DEX (Figure 2A).

DEX = 0 indicates that adding one or more copies of Xi does

not affect the level of expression (e.g., PRPS2; Figures 2B and

S3); DEX > 0 indicates that expression increases under these

circumstances (e.g., KDM5C; Figures 2C and S4), DEX = 1 indi-

cates that Xa and Xi contribute equally; and DEX < 0 indicates

that expression decreases (e.g., F8; Figures 2D and S5). XIST,

the lncRNA that acts in cis to transcriptionally repress X chromo-

somes fromwhich it is expressed,30,31 was the only gene without

detectable expression in cells with one copy of Chr X (Xa) that

was expressed robustly in cells with one or more inactive copies
(Xi). Considering samples with two or more X chromosomes, we

found that XIST expression increased linearly with each addi-

tional copy of Xi (Figures 2E and S4).

DEX values vary widely among Chr X genes but not
between cell types
Analyzing DEX values across Chr X genes revealed that Xi contri-

butions to expression varied widely. Of 357 Chr X genes ex-

pressed in LCLs, 235 (66%) showed no significant change in

expression level with additional copies of Xi (DEX z 0), and the

same was true for 304 (77%) of 393 Chr X genes expressed in fi-

broblasts (Figures 2F and 2G; full results in Table S2). This is

consistent with these genes being expressed—in the respective

cell types—from a cell’s first X chromosome (Xa) and silencing

on all others (Xi). The remaining 122 (34%)Chr X genes expressed

in LCLs and 89 (23%) Chr X genes expressed in fibroblasts had

significantly negative or positive DEX values. Combining the re-

sults in LCLs and fibroblasts, Xi copynumber significantly impacts

gene expression levels for 162 of 423 (38%) Chr X genes ex-

pressed in one or both cell types. NPX genes’ DEX values ranged

from �0.39 to 1.2 (Figures 2F and 2G). PAR1 genes had DEX

values near one, while PAR2 genes had values near zero

(TableS2). The stark differencebetweenPAR1andPAR2 likely re-

flects their evolutionaryorigins: PAR1waspreservedonChr X and

Y through sex chromosome evolution and retains autosome-like

features, while PAR2 evolved later through a transposition from

Chr X to Chr Y.32 For nearly all Chr X genes, the change in expres-

sion per Xi falls short of that contributed by Xa (DEX<1), similar to

previous studies using allelic ratio analysis.13,14 Only two NPX

genes—XIST and PUDP—and three PAR1 genes—DHSRX,

PLCXD1, and PPP2R3B—showed DEX values approaching or

exceeding one in both LCLs and fibroblasts.

We assessed whether these Chr X expression dynamics were

influenced by factors apart from Xi count. We found few

differences between cell types; genes expressed in both LCLs

and fibroblasts displayed concordant DEX values (Figure 2H).

This is consistent with studies of differential expression between

46,XY and 46,XX tissues that found correlated expression

changes for Chr X genes across diverse tissues.15 To control

for any effects of gonadal sex or Y chromosome copy number

on our results, we reanalyzed the data from samples with zero

(45,X; 46,XX; 47,XXX; 48,XXXX) or one copy of Chr Y (46,XY;

47,XXY; 48,XXXY; 49,XXXXY), modeling expression as a function

of Xi copy number and batch. DEX values were unaffected by the

presence or absence of a Y chromosome (Figure S6). Because of

its design, our study reveals that these consistent Chr X expres-

sion dynamics derive from direct, cell-autonomous contributions

of Xi rather than systemic effects of hormones or environmental

factors.

For genes with multiple transcript isoforms (alternative tran-

scripts), we asked whether DEX values were consistent between

isoforms (STAR Methods). For most genes, transcript isoforms

displayed concordant DEX values. However, for genes with mul-

tiple transcript isoforms, 33 (19%) in LCLs and 25 (13%) in fibro-

blasts had discordant DEX values: at least one isoform’s DEX

differed significantly from zero (false discovery rate

[FDR] < 0.05), while another isoform’s DEX did not (Figure S7;

Table S3). The most striking case is that of UBA1, where
Cell Genomics 3, 100259, February 8, 2023 3
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alternative transcription start sites, separated by a CTCF binding

site, display divergent behaviors (Figure S8).

To assess reproducibility, we compared our results with those

from an independent dataset that used microarrays to assay

gene expression in LCLs across diverse sex chromosome con-

stitutions.24 Reanalyzing this dataset using linear models, we

found that the resulting microarray DEX values correlated well

with theDEX values calculated fromourRNA-seq data (FigureS9;

STAR Methods).

Supernumerary copies of Chr Y and 21 show little
attenuation of gene expression
To determine whether the attenuated expression observed with

extra copies of Chr X also occurs with additional copies of other

chromosomes, we analyzed cells from individuals with additional

copies of Chr Y or with trisomy 21, a common autosomal aneu-

ploidy and the cause of Down syndrome.33

For Chr Y, we used the same linear model as for Chr X:

modeling expression as a function of Chr Y copy number, Xi

copy number, and batch (Figure 3A; STAR Methods). We calcu-

lated DEY values separately for NPY and PAR genes because

NPY genes are not expressed in samples with zero Y chromo-

somes, while PAR genes are expressed in all samples.

For NPY genes, we analyzed samples with one to four Y chro-

mosomes to quantify expression differences, if any, between the

first and additional Y chromosomes. Expression of all NPY genes

increased significantly, with DEY values close to 1, consistent

with near-equal expression from each copy of Chr Y (e.g.,

KDM5D; Figures 3B–3D and S10; full results in Table S4).

For PAR genes, we analyzed samples with zero to four Y

chromosomes. As with Chr X, PAR1 gene expression increased

with additional copies of Chr Y, yielding DEY values close to one,

whereas PAR2 genes had DEY values near zero (Figures 3C and

3D). This implies, first, that PAR1 genes are expressed on each

copy of Chr X or Y, while PAR2 genes are only expressed on

the first copy of Chr X (Xa), and, second, that PAR1 gene expres-

sion from each additional Chr X or Y is roughly equal to expres-

sion from the first.

Finally, we examined Chr 21 gene expression as a function of

Chr 21 copy number (Figures 3E and S11; STAR Methods).

Nearly three-quarters of expressed Chr 21 genes significantly

(FDR < 0.05) increased in expression with an additional copy of

Chr 21 (e.g., CCT8; Figure 3F), and none significantly decreased

(Figure 3G; Table S5). These results align well with independent

studies of Chr 21 gene expression.34

In sum, unlike genes on Chr X, our analysis reveals that most

genes on Chr Y and Chr 21 are expressed similarly on each
Figure 2. Quantitative assessment of Xi contributions to X chromosom

(A) Schematic scatterplot, linear regression line, and DEX calculation for a hypoth

sample with the indicated number of copies of Chr X. The calculated coefficient

(B–E) Actual scatterplots and regression lines with confidence intervals for select

(FDR) < 0.05 indicate that DEX values are significantly different from 0.

(F and G) Scatterplots of DEX versus significance for all Chr X genes expressed in

expression; genes with FDR < 0.05 and |DEX| R 0.2 are labeled; genes depicted

(H) Scatterplot comparing DEX in LCLs and fibroblasts for 327 Chr X genes exp

Pearson correlation are indicated.

See also Table S2.
copy of their respective chromosomes. The median DE values

for Chr Y (including NPY and PAR1) and Chr 21 genes range

from 0.74 to 1. By comparison, NPX genes without NPY homo-

logs had median DEX z 0, while NPX genes with NPY homologs

had modestly higher median DEX values (LCLs: 0.26, fibroblasts:

0.17; Figure 3H). Even PAR1 genes, which as a group had the

highest median DEX values, were modestly attenuated on Xi

compared with Chr Y, especially in LCLs (Figure 3H). This

Y-vs.-X effect was most pronounced for CD99, located near

the PAR1-NPX/Y boundary (Tables S2 and S4), consistent with

suggestions that PAR1 gene expression on Xi is modestly atten-

uated by spreading of heterochromatin.15 These differences

highlight the absence of a chromosome-wide mechanism atten-

uating (or otherwise altering) gene expression on supernumerary

copies of Chr Y and Chr 21, in contrast to Chr X.

Xi modulation of Xa transcript levels revealed by
divergence of DEX and allelic ratio
DEX conveys the change in a gene’s expression due to an addi-

tional Xi regardless of the mechanism(s) responsible for this

change. We hypothesized that a Chr X gene’s DEX value could

reflect the combined effects of two mechanisms: (1) transcrip-

tion of Xi allele(s) and (2) modulation of the Xa allele by Xi in trans.

Seeking evidence of these mechanisms, we searched gene

by gene for agreements and disagreements between our calcu-

lated DEX values and published descriptions of the genes as

‘‘escaping’’ XCI (being expressed from Xi) or being subject to it

(silenced on Xi). For this purpose, we curated annotations of

each expressed gene’s XCI status from studies of allele-specific

expression13–16,18 (STAR Methods; Table S6). Many genes with

DEX > 0 were classified as expressed from Xi (50/74 in LCLs

and 43/61 in fibroblasts), indicating that transcription from Xi

alleles underlies their DEX values (Figure 4A; Table S6). Genes

with these characteristics overlapped significantly between

fibroblasts and LCLs (Figure 4B).

For 102 (24%) of the 423 Chr X genes we evaluated in LCLs or

fibroblasts, our calculated DEX values were at odds with expec-

tations arising from the published annotations of XCI status

(Figures 4A and 4C; Table S6). For example, among genes with

DEX > 0, 22 in LCLs and 14 in fibroblasts were described as

silenced on Xi. Additionally, previous models offer no explana-

tion for the 48 genes in LCLs and 28 genes in fibroblasts with

DEX < 0, most of which were described as silenced on Xi

(Figures 4A and 4C; Table S6). Genes with these characteristics

did not overlap significantly between LCLs and fibroblasts, even

though most are expressed in both cell types, indicating that this

regulation is largely cell-type specific (Figure 4C). These
e gene expression

etical Chr X gene. Each point represents the expression level for an individual

s from the linear model in Figure 1C are used to derive DEX.

ed Chr X genes in LCLs, representing a range of DEX values. Adjusted p values

LCLs (F) and fibroblasts (G) illustrate variation in Xi contributions to Chr X gene

in (B)–(E) are underlined.

ressed in both cell types. Colors as in (F) and (G). Deming regression line and
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Figure 3. Contributions of Chr Y or 21 copy number to gene expression

(A) Chr Y copy number series with zero to four copies.

(B) Each point shows the expression of NPY gene KDM5D in one LCL sample across the Chr Y copy-number series, with the regression line and its confidence

interval plotted. The formula for calculating DEY from the regression coefficients is indicated.

(C and D) Scatterplot of DEY versus significance for all Chr Y genes expressed in LCLs (C) or fibroblasts (D); all NPY genes are labeled; KDM5D, depicted in (B), is

shown in black.

(E) Chr 21 copy-number series with two to three copies.

(F) Each point shows the expression of CCT8 in one LCL sample across the Chr 21 copy-number series, with the regression line and its confidence interval

plotted. The formula for calculating DE21 from the regression coefficients is indicated.

(G) Scatterplot of DE21 versus significance for all Chr 21 genes expressed in LCLs. CCT8, depicted in (F), is shown in black.

(H) Violin plots with median and interquartile range for DE values of NPX (without or with an NPY homolog), PAR, NPY, and Chr 21 genes. p values are listed for

comparisons referenced in the text. DEX values for NPX genes with and without a Y homolog were compared using Wilcoxon rank-sum test. DEX and DEY values

for PAR1 genes were compared using paired t test.

See also Tables S4 and S5.
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unanticipated findings are unlikely to reflect experimental error in

the previous or current studies. Instead, they suggest that, for

many Chr X genes whose Xi allele(s) are silent, the Xa allele is

nonetheless upregulated (DEX > 0) or downregulated (DEX < 0)

by Xi.

To corroborate these findings in our own dataset, we

performed an allele-specific analysis in our LCL and fibroblast

samples with two X chromosomes. To distinguish between

Chr X alleles, we identified heterozygous SNPs in expressed

genes (STAR Methods). We then identified samples in our

dataset with skewed XCI (21 LCL and 10 fibroblast samples;

Figures S12–S16) and used these samples to compute the

average ratio of Xi to Xa expression (the allelic ratio [AR]) for

each gene. To calculate the AR, we required heterozygous

SNPs in at least three samples, resulting in AR values for 151

genes in LCLs and 119 in fibroblasts (Table S6; Figure S17). In

LCLs and fibroblasts, respectively, 38 (25%) and 22 (18%) of

these genes had AR values significantly greater than zero, indi-

cating that they are expressed from Xi (Figures 4D and 4E); these

results agreed well with published AR values (Figure S18).

We next compared each gene’s AR and DEX values. If Xi and

Xa expression are fully independent of each other, and therefore

additive, we would expect the AR for a given gene to approxi-
6 Cell Genomics 3, 100259, February 8, 2023
mate its DEX value. However, if Xi modulates the gene’s Xa tran-

script levels in trans, then independence and additivity will not be

observed, and instead the gene’s DEX and AR values will differ.

Most X-linked genes, e.g., EIF2S3, had AR values that approxi-

mate their DEX values, and AR and DEX were highly correlated

among many informative genes in both LCLs and fibroblasts

(Figures 4F and 4G). For these genes, the DEX value may directly

reflect the level of transcription from Xi.

However, for 33 informative genes in LCLs or fibroblasts, AR

and DEX were significantly different, indicating that Xi modulated

Xa transcript levels upward or downward in trans (Figures 4F–4H;

STAR Methods). Some genes, like MPP1, were not expressed

from Xi (AR z 0) but nonetheless had DEX values significantly

different from zero: 0.24 in LCLs and 0.21 in fibroblasts, indi-

cating that levels of Xa-derived transcripts are positively regu-

lated by Xi. Other genes, like DDX3X and PUDP, had significant

expression from Xi (AR > 0, FDR < 0.05) and evidence of Xi regu-

lation of steady-state expression levels. DDX3X had an AR

(LCLs: 0.55, fibroblasts: 0.42) that is significantly higher than its

DEX value (LCLs: 0.26, fibroblasts: 0.16) in both LCLs and fibro-

blasts, indicating both thatDDX3X is expressed on Xi and that its

steady-state transcript levels are negatively regulated by Xi.

Conversely, PUDP had an AR (LCLs: 0.71, fibroblasts: 0.73)
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Figure 4. Comparison of DEX values with allelic ratios (ARs) reveals that Xi modulates Xa expression

(A) Stacked barplots for genes with DEX values greater than, less than, or approximately equal to zero, apportioned by their annotated XCI status from published

studies (see STAR Methods and Table S6 for newly compiled XCI status calls).

(B and C) Venn diagrams comparing LCLs and fibroblasts for genes with DEX values that are either (B) explained or (C) not explained by published XCI status.

Genes expressed in both cell types were included in the Venn diagrams, and genes with cell-type-specific expression are noted below.

(D and E) Each point shows the mean adjusted AR for an informative gene (with heterozygous SNPs in at least 3 samples with skewed XCI) and whether AR is

significantly greater than zero in (D) LCLs or (E) fibroblasts.

(F and G) Each point denotes AR and DEX values for an AR-informative gene in (F) LCLs or (G) fibroblasts. The color of the point indicates whether the gene’s AR

value is significantly greater than zero (blue) or not (gray); the shape indicates whether the gene’s DEX value is significantly different from zero (circles) or not

(squares); and an orange outline indicates thatDEX differs significantly fromAR. Black diagonal line, AR =DEX. Pearson correlation coefficients (r) and p values are

indicated.

(H) Venn diagram comparing LCLs and fibroblasts for genes with DEX values not equal to their AR values. Genes expressed and informative in both cell types are

depicted in the Venn diagram, with genes that are cell-type specific or informative in only one cell type indicated below.

(I) Venn diagram comparing all modulated genes in LCLs and fibroblasts (the union of figures, C and H). All Venn diagram p values, hypergeometric test.

See also Table S6.
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that is significantly lower than its DEX value (LCLs: 1, fibroblasts:

1.2), indicating both that PUDP is expressed on Xi and that the

gene’s steady-state transcript levels are positively regulated

by Xi.
These analyses, combining DEX with published or newly

derived AR data, provide a rich portrait of X-linked gene regula-

tion. They show that Xi can impact expression levels of an

X-linked gene through two mechanisms: transcription of the Xi
Cell Genomics 3, 100259, February 8, 2023 7
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allele and modulation of steady-state transcript levels by Xi in

trans. These mechanisms can operate independently of each

other, or together, on a gene-by-gene basis, and each of the

two mechanisms affects a sizable fraction of all X chromosome

genes. Of 423 X chromosome genes expressed in LCLs and/or

fibroblasts, at least 121 genes (29%) are modulated on Xa by

Xi in one or both cell types (Figure 4I). This represents the union

of the 102 genes for which the public AR data cannot explain the

DEX values (Figure 4C) and the 33 genes with AR values signifi-

cantly different from DEX (Figure 4H). The observed modulation

of steady-state transcript levels suggests that Xi regulates the

expression of genes on Xa in trans.

Combining DEX and expression constraint metrics
identifies likely drivers of Xi-associated phenotypes
While the somatic cells of all diploid individuals have one Xa, the

number of Xis varies in the human population from zero to four.

This variation is associated with many important differences in

phenotypes and disease predispositions, for example those

observed between 45,X (Turner syndrome) and 46,XX individ-

uals, between 47,XXY (Klinefelter syndrome) and 46,XY individ-

uals, or even between 46,XY males and 46,XX females. We

hypothesized that phenotypes and predispositions associated

with Xi copy number are due to changes in the copy numbers

of some of the Chr X genes where we found positive or negative

DEX values. We reasoned that phenotypically critical genes

would be ‘‘dosage sensitive’’, i.e., their expression levels would

be tightly constrained by natural selection, while the expression

levels of genes whose dosage is not phenotypically critical could

vary with little consequence.

To gauge the constraints that selection has imposed on each

gene’s expression level, we turned to metrics derived from popu-

lation and evolutionary genetic studies. We assessed tolerance of

under-expression using (1) loss of function observed/expected

upper fraction (LOEUF), the ratio of observed to expected loss-

of-function (LoF) variants in human populations,35 (2) RVIS, the re-

sidual variation intolerance score,36 and (3) pHI, the probability of

haploinsufficiency.37 Both LOEUF and RVIS use large-scale hu-

man genomic sequencing data to evaluate selection against LoF

variants,while pHI isbasedonevolutionary and functionalmetrics.

LoF variants should be culled from the population in genes whose

under-expression is deleterious, while they may accumulate in

genes whose under-expression has little effect on fitness.

To assess tolerance of over-expression, we examined conser-

vation of targeting by microRNAs (miRNAs; PCT score
38), which

repress expression by binding to a gene’s 30 untranslated re-

gion.39 Genes sensitive to over-expression havemaintained their

miRNA binding sites across vertebrate evolution, while genes

whose over-expression has little or no effect on fitness show

less conservation of these sites.40

To weigh these four metrics simultaneously, we calculated

each gene’s percentile rank for each metric, from most con-

strained (high percentile) to least constrained (low percentile).

We calculated percentiles separately for autosomal (including

PAR1) and NPX genes and then, for each gene, averaged

percentile rankings across the four metrics.

We first examined expression constraints for PAR1 genes

whose high DEX values suggested that they may drive pheno-
8 Cell Genomics 3, 100259, February 8, 2023
types associated with Xi copy number. Compared with auto-

somal genes, PAR1 genes are less constrained on average

(p = 5.5e�5, Wilcoxon rank-sum test), with most ranking in the

least-constrained quartile (Figures 5A and 5B; Table S7). This in-

dicates that altering their expression levels has little impact on

human fitness. Indeed, homozygous LoF mutations have been

reported for 3 of 15 PAR1 genes, demonstrating dispensability.35

Only two PAR1 genes, SHOX and SLC25A6, rank in the more

constrained half of the comparison group (Table 2). SHOX

copy number contributes to variation in height in individuals

with sex chromosome anomalies,41–45 while SLC25A6 has not

yet been linked to any phenotype. Apart from these two genes,

the high tolerance of under- and over-expression for most

PAR1 genes argues against prominent roles in phenotypes

associated with Chr X (or X + Y) copy number.

Turning to the much larger set of NPX genes, we found that

their widely ranging constraint metrics correlated poorly with

their DEX values (Figures 5C and 5D; Table S7). Thus, DEX alone

does not predict dosage sensitivity among NPX genes. To

identify the NPX genes most likely to drive Xi-copy-number-

dependent phenotypes, we selected those with |DEX| R 0.1

(FDR < 0.05) in LCLs or fibroblasts and ranked these by their

average constraint metrics. Five of the top 10 genes by

these criteria (Table 2) had NPY homologs, a significant enrich-

ment (p = 7.0e�4, hypergeometric test), and all five had DEX

values > 0.1 in both cell types. Of the five genes without NPY

homologs, only two had DEX values significantly greater than

zero in both cell types: SMC1A and CDK16. The remaining three

genes hadDEX values significantly different from zero in only one

of the two cell types analyzed, and they tended to have lower

absolute DEX values.

If these 10 genes are dosage-sensitive drivers of Xi-dependent

phenotypes—evenwhenharboring nomutations—thenonemight

expect mutant phenotypes to be pronounced and to display

distinctive modes of inheritance. Accordingly, we searched

OMIM for disease annotations. Germline mutations in seven of

the 10 genes are reported to cause severe developmental disor-

ders, including well-characterized childhood syndromes for five

of the genes (Tables S2 Table S7). Indeed, five of the seven muta-

tion-bearing genes are reported to display dominant inheritance

(affected heterozygous females)—asignificant enrichment among

X-linked genes (p = 0.0037, hypergeometric test) and consistent

with extraordinary dosage sensitivity. Extrapolating from these

findings, we speculate that some of the genes without annotated

OMIM phenotypes may have important roles in disease; in the

case of ZFX, no LoF mutations are reported in gnomAD even

though the gene’s roles in regulating stem cell self-renewal and

cancercell proliferationarewell documented.46–48 Taken together,

these 10 genes represent good candidates for driving Xi-depen-

dent phenotypes characteristic of individuals with sex chromo-

some aneuploidies—as well as differences in disease risks

between ordinary (euploid) females and males.

DISCUSSION

We analyzed Chr X gene expression quantitatively in two types of

cells cultured from individuals with one to four X chromosomes,

e.g., 45,X to 49,XXXXY (Figure 1). Folding this diversity of sex
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Figure 5. Combining DEX with metrics of constraint on expression levels identifies genes likely to contribute to phenotypes associated with

Xi copy number

Scatterplots of DEX versus gene constraint percentile ranking for PAR1 (A and B) or NPX (C and D) genes. Each point represents an expressed gene with scores

for at least two of the four expression constraint metrics evaluated, excluding ampliconic genes. Dashed lines indicate |DEX| thresholds of 0.1 for genes to be

considered likely contributors to phenotypes driven by Xi copy number; labeled genes include (A and B) SLC25A6, the only PAR1 gene to score above the 50th

percentile for autosomal and PAR genes, and (C and D) among NPX genes with |DEX| > 0.1, the 10 genes with the highest constraint percentile rankings in LCLs or

fibroblasts.

See also Table S7.
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chromosome constitutions into a single linear model (Figure 2)

yielded advantages over previous studies, which compared sex

chromosome constitutions in pairwise fashion, most frequently

45,X vs. 46,XX; 46,XY vs. 47,XXY; or 46,XX vs. 46,XY. First, our

linear model embodied, tested, and confirmed—at the level of

the X transcriptome—the ‘‘n�1’’ rule,4 whereby diploid somatic

cells with a given number (n = 1, 2, 3, 4) of X chromosomes have

a single Xa and n�1 Xi’s. Second, linear modeling provided the

power needed to detect and precisely quantify increases or de-

creases in expression of individual Chr X genes as a function of

Chr X copy number. Third, linear modeling revealed that the

expression contributions made by each copy of Xi are modular,

indicating that each copy of Xi is equivalent, or nearly so, even

among unrelated individuals. Fourth, by comparing samples that

vary in Xi copy number with and without a Y chromosome, we

found that expression from Xa is quantitatively indistinguishable

in phenotypic males and females—as is expression from Xi (Fig-

ure S6). Thus, both Xi and Xa make modular contributions to Chr

X gene expression—contributions independent of and unaffected

by the presence of the NPY or the gonadal sex of the individual.

Finally, linear modeling of gene expression as a function of Chr

X copy number yielded the metric DEX, which captures the pos-

itive or negative impact of Xi(s) on steady-state transcript levels
for each gene, normalized to account for gene-to-gene variation

in expression level (Figure 2A). Fully 38% (162/423) of expressed

Chr X genes in LCLs or fibroblasts displayed a statistically signif-

icant positive or negative DEX value, indicating that their expres-

sion is impacted by the presence of one or more copies of Xi.

This is nearly double what would be expected based on the prior

literature’s estimates of escape, which—based upon our re-

analysis using the broadest definition of escape—includes only

20% (86/423) of expressed Chr X genes in these cell types

(Table S6). DEX values varied widely among Chr X genes, from

�0.39 to 1.2 (Figures 2F and 2G), but showedmuch less variation

between the two cell types studied (Figure 2H), suggesting the

possibility that the DEX ‘‘settings’’ for each gene were estab-

lished prior to the embryonic divergence of the hematopoietic

and skin fibroblast lineages and subsequently maintained

through development.

We extended the utility of the DEX metric by cross-referencing

and comparing it, one gene at a time, with an orthogonal metric:

the AR of Xi and Xa transcripts in cells with skewed XCI and SNP

heterozygosity. AR values significantly greater than zero unam-

biguously identify Chr X genes that are expressed from both Xi

and Xa (and therefore ‘‘escape’’ XCI).49 By comparing DEX and

AR values, we discovered that Xi up- or downmodulates Xa
Cell Genomics 3, 100259, February 8, 2023 9



Table 2. X chromosome genes that may drive the phenotypic impacts of variation in Xi copy number

Region Gene symbol Gene name

NPY gene

symbol

DEX Gene constraint

(average % ranking)a
Disease associations

LCL Fib. Phenotype Inheritanceb MIM #

NPX KDM6A lysine demethylase 6A UTY 0.83 0.45 93.3 Kabuki syndrome XLD 300867

KDM5C lysine demethylase 5C KDM5D 0.73 0.58 90.3 Claes-Jensen

syndrome

XLR 300534

SMC1A structural maintenance

of chromosomes 1A

– 0.58 0.43 87.6 Cornelia de Lange syndrome;

developmental and epileptic

encephalopathy

XLD 300590,

301044

ZFX zinc finger protein X-linked ZFY 0.45 0.47 83.0 – – –

RBBP7 RB-binding protein 7,

chromatin remodeling

factor

– 0.01 0.29 82.5 – – –

DDX3X DEAD-box helicase 3 X-linked DDX3Y 0.26 0.16 89.2 syndromic IDD,c

Snijders Blok type

XLD, XLR 300958

CDK16 Cyclin dependent kinase 16 – 0.09 0.24 83.8 – – –

DLG3 discs large MAGUK scaffold

protein 3

– 0.18 0.07 82.8 IDD XLR 300580

USP9X ubiquitin-specific protease

9 X-linked

USP9Y 0.14 0.17 94.4 IDD XLR, XLD 300919,

300968

BCOR BCL6 corepressor – 0.12 0.01 91.1 oculofaciocardiodental

syndrome

XLD 300166

PAR1 SLC25A6 solute carrier family 25

member 6

N/A 1.0 0.74 67.4 – – –

SHOX short stature homeobox N/A N/Ad N/A 58.4 Leri-Weill dyschondrosteosis;

Langer mesomelic dysplasia;

short stature idiopathic familial

PD, PR 127300,

249700,

300582
aGene constraint percentile ranking is calculated for NPX genes relative to all annotated NPX genes and for PAR1 genes relative to all PAR and autosomal genes.
bXLD, X-linked dominant; XLR, X-linked recessive; PD, pseudoautosomal dominant; PR, pseudoautosomal recessive.
cIDD, intellectual developmental disorder.
dSHOX is not expressed in fibroblasts or LCLs but is included because its dosage has been conclusively linked to height in individuals with sex chromosome aneuploidy.
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expression of at least 121 genes, or nearly 29% of the 423 Chr X

genes that are demonstrably expressed in either LCLs or fibro-

blasts. This modulation is manifest whenever a gene’s AR and

DEX values differ significantly, and it is most starkly apparent

when the gene is not expressed from Xi (i.e., when AR approxi-

mates zero) but nonetheless displays a significantly positive or

negativeDEX value.While ‘‘escape’’ fromXCI has beenwell docu-

mented over the past four decades,12–15 the novel combination of

the AR and DEX metrics reported here was required to observe

modulation, explaining why it has previously been unappreciated.

Thus, combined analysis of DEX and AR reveals a nuanced,

gene-by-gene tapestry of Xi-driven changes in expression of

Chr X genes. For some genes, DEX was explained entirely by

expression from the Xi allele, while for others,DEX was explained

entirely by modulation—positive or negative—of steady-state

RNA levels derived from the Xa allele. For a third set of genes,

DEX was explained by the combined effects of expression from

Xi and modulation of steady-state RNA levels. Proposals of

uniform, chromosome-wide ‘‘X chromosome upregulation’’

(XCU) during mammalian development or evolution50,51 will

need to be revisited in light of this unforeseen diversity of

gene-by-gene responses to variation in Chr X copy number.

Finally, we paired the DEX metric with population and evolu-

tionary measures of constraint on expression levels to identify

10 NPX genes that are most likely (among the 423 Chr X genes

expressed in LCLs and/or fibroblasts) to drive Xi-associated

phenotypes (Figures 5C and 5D; Table 2). Despite their high

DEX values, most PAR genes did not exhibit the constraints on

expression levels that we required for inclusion in this select

group of candidate drivers (Figures 5A and 5B). We propose

the 10 NPX genes—five of which have divergent NPY homo-

logs—as potential drivers of (1) differences in health and disease

between 46,XY and 46,XX cohorts and (2) the distinctive pheno-

types associated with sex chromosome aneuploidies, including

Turner syndrome (45,X) and Klinefelter syndrome (47,XXY). We

speculate that one ormore of these 10NPX genes, which include

transcriptional and epigenetic regulators, may also drive the

modulation of Xa genes by Xi.

Limitations of the study
The human individuals sampled here are mostly of European

ancestry; it will be important to validate these findings in a

more ancestrally diverse set of individuals. Our findings in

LCLs and fibroblasts were largely concordant, but they may

not generalize to all somatic tissues and cell types. Our study

focused on 423 Chr X genes that are expressed in LCLs and/or

fibroblasts; our conclusions may not generalize to Chr X genes

that are not expressed in these cell types. Our list of Chr X genes

likely to drive Xi-dependent phenotypes is incomplete, as it is

biased toward genes expressed in LCLs and fibroblasts and

toward genes with long open reading frames well suited to

expression constraint analysis; future studies will add to this

list. In addition to these caveats regarding our current findings,

several topics remain unexplored in this article and should be ad-

dressed in future studies; these include the molecular mecha-

nisms by which Xi modulates gene expression on Xa, whether

these mechanisms are direct or indirect, and whether these

mechanisms also affect gene expression on autosomes.
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Wang, Q., Collins, R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P.,

et al. (2020). The mutational constraint spectrum quantified from variation

in 141,456 humans. Nature 581, 434–443. https://doi.org/10.1038/

s41586-020-2308-7.

36. Petrovski, S., Wang, Q., Heinzen, E.L., Allen, A.S., and Goldstein, D.B.

(2013). Genic intolerance to functional variation and the interpretation of

personal genomes. PLoS Genet. 9, e1003709. https://doi.org/10.1371/

journal.pgen.1003709.

37. Huang, N., Lee, I., Marcotte, E.M., and Hurles, M.E. (2010). Characterising

and predicting haploinsufficiency in the human genome. PLoS Genet. 6,

e1001154. https://doi.org/10.1371/journal.pgen.1001154.

38. Friedman, R.C., Farh, K.K.H., Burge, C.B., and Bartel, D.P. (2009). Most

mammalian mRNAs are conserved targets of microRNAs. Genome Res.

19, 92–105. https://doi.org/10.1101/gr.082701.108.

39. Bartel, D.P. (2009). MicroRNAs: target recognition and regulatory func-

tions. Cell 136, 215–233. https://doi.org/10.1016/j.cell.2009.01.002.

40. Naqvi, S., Bellott, D.W., Lin, K.S., and Page, D.C. (2018). Conserved mi-

croRNA targeting reveals preexisting gene dosage sensitivities that

shaped amniote sex chromosome evolution. Genome Res. 28, 474–483.

https://doi.org/10.1101/gr.230433.117.

41. Ogata, T., andMatsuo, N. (1993). Sex chromosome aberrations and stature:

deduction of the principal factors involved in the determination of adult

height. Hum. Genet. 91, 551–562. https://doi.org/10.1007/BF00205079.

42. Rao, E., Weiss, B., Fukami, M., Rump, A., Niesler, B., Mertz, A., Muroya,

K., Binder, G., Kirsch, S., Winkelmann, M., et al. (1997). Pseudoautosomal

deletions encompassing a novel homeobox gene cause growth failure in

idiopathic short stature and Turner syndrome. Nat. Genet. 16, 54–63.

https://doi.org/10.1038/ng0597-54.
43. Clement-Jones, M., Schiller, S., Rao, E., Blaschke, R.J., Zuniga, A., Zeller,

R., Robson, S.C., Binder, G., Glass, I., Strachan, T., et al. (2000). The short

stature homeobox gene SHOX is involved in skeletal abnormalities in

Turner syndrome. Hum. Mol. Genet. 9, 695–702. https://doi.org/10.

1093/hmg/9.5.695.

44. Ottesen, A.M., Aksglaede, L., Garn, I., Tartaglia, N., Tassone, F., Gravholt,

C.H., Bojesen, A., Sørensen, K., Jørgensen, N., Rajpert-DeMeyts, E., et al.

(2010). Increased number of sex chromosomes affects height in a

nonlinear fashion: a study of 305 patients with sex chromosome aneu-

ploidy. Am. J. Med. Genet. 152A, 1206–1212. https://doi.org/10.1002/

ajmg.a.33334.

45. Fukami, M., Seki, A., and Ogata, T. (2016). SHOX haploinsufficiency as a

cause of syndromic and nonsyndromic short stature. Mol. Syndromol. 7,

3–11. https://doi.org/10.1159/000444596.

46. Galan-Caridad, J.M., Harel, S., Arenzana, T.L., Hou, Z.E., Doetsch, F.K.,

Mirny, L.A., and Reizis, B. (2007). Zfx controls the self-renewal of embry-

onic and hematopoietic stem cells. Cell 129, 345–357. https://doi.org/

10.1016/j.cell.2007.03.014.

47. Zhou, Y., Su, Z., Huang, Y., Sun, T., Chen, S., Wu, T., Chen, G., Xie, X., Li,

B., and Du, Z. (2011). The Zfx gene is expressed in human gliomas and is

important in the proliferation and apoptosis of the humanmalignant glioma

cell line U251. J. Exp. Clin. Cancer Res. 30, 114. https://doi.org/10.1186/

1756-9966-30-114.

48. Fang, Q., Fu, W.H., Yang, J., Li, X., Zhou, Z.S., Chen, Z.W., and Pan, J.H.

(2014). Knockdown of ZFX suppresses renal carcinoma cell growth and in-

duces apoptosis. Cancer Genet. 207, 461–466. https://doi.org/10.1016/j.

cancergen.2014.08.007.

49. Carrel, L., and Willard, H.F. (1999). Heterogeneous gene expression from

the inactive X chromosome: an X-linked gene that escapes X inactivation

in some human cell lines but is inactivated in others. Proc. Natl. Acad. Sci.

USA 96, 7364–7369. https://doi.org/10.1073/pnas.96.13.7364.

50. Okamoto, I., Nakamura, T., Sasaki, K., Yabuta, Y., Iwatani, C., Tsuchiya,

H., Nakamura, S.I., Ema, M., Yamamoto, T., and Saitou, M. (2021). The

X chromosome dosage compensation program during the development

of cynomolgus monkeys. Science 374, eabd8887. https://doi.org/10.

1126/science.abd8887.

51. Ohno, S. (1967). Sex Chromosomes and Sex-Linked Genes (Springer Ber-

lin Heidelberg). https://doi.org/10.1007/978-3-642-88178-7.
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RESOURCE AVAILABILITY

Lead contact
Further information and request for resources and reagents should be directed to and will be fulfilled by lead contact, David C. Page

(dcpage@wi.mit.edu).

Materials availability
Cell lines are available upon request to the lead contact.

Data and code availability
d Raw, de-identified RNA-sequencing data from human cell cultures has been deposited to dbGaP under accession number

phs002481.v2.p1, and processed data has been deposited at Zenodo under accession number https://doi.org/10.5281/

zenodo.7504743.

d This paper analyzes existing, publicly available data. Accession numbers for these datasets are listed in the key resources ta-

ble.

d Original code has been deposited at Zenodo under accession number https://doi.org/10.5281/zenodo.7504743 and is publicly

available as of the date of publication.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human subjects
Adults (18+ years of age) with sex chromosome aneuploidies or euploid controls were recruited through an IRB-approved study at the

NIH Clinical Center (12-HG-0181) and Whitehead Institute/MIT (Protocol #1706013503). Informed consent was obtained from all

study participants. Individuals with a previous karyotype showing non-mosaic sex chromosome aneuploidy were included in the

study. From these individuals, blood samples and skin biopsies were collected at the NIH Clinical Center and shipped to the

Page lab for derivation of cell lines. In addition, blood samples from individuals with sex chromosome aneuploidies, and euploid fam-

ily members, ranging in age from 4-44 years were contributed by the Focus Foundation. Additional LCLs and fibroblast cultures were

obtained from the Colorado Children’s Hospital Biobank and Coriell Research Institute, and cultured in the Page laboratory for at

least two passages prior to collection for RNA-sequencing. Karyotyping of peripheral blood and fibroblast cell cultures was

performed at the National Human Genome Research Institute Cytogenetics and Microscopy Core. To reduce the impact of sex

chromosome mosaicism on our sex chromosome aneuploidy analysis, we excluded individuals with >15% mosaicism for other

karyotypes. Metadata for cell lines represented in the RNA-sequencing dataset are provided in Table S1.

METHOD DETAILS

Cell culture
Lymphoblastoid cell lines

Blood was collected in BD Vacutainer ACD tubes and shipped at room temperature to the Page Lab for processing 1-3 days after

collection. The buffy coat was resolved by centrifuging blood at 3300 rpm for 10 min, transferred to a new tube with PBS, and sub-

jected to density gradient centrifugation in 50% Percoll (Cytiva) at 3300 rpm for 10 min. Lymphocytes were transferred to a new tube

and washed twice with PBS. Lymphocytes were resuspended in 3 mL complete RPMI medium (RPMI 1640 (Gibco), 25mM HEPES

(SAFC), 15% FBS (Hyclone), Fungizone (Amphotericin B, Gibco), Gentamicin (Gibco), Penicillin/Streptomycin (Lonza), pH 7.2) per

tube of blood and transferred to a T25 flask, supplemented with 0.25mL EBV (produced by B95-8 marmoset lymphoblasts), and

0.2 mL of 1 mg/mL cyclosporine (LC Laboratories). They were incubated for one week at 37�C, fed 1-2 mL complete RPMI, and incu-

bated for another week at 37�C. Once the media began to turn yellow (acidified), cultures were ‘‘half-fed’’ by removing half of the

media and replacing it with double the volume. When cultures reached 15 mL, they were transferred to T75 flasks, and gradually

expanded to 30 mL, while maintaining a concentration of <1 million cells/mL to ensure viability. Cells were viably frozen for future

use by mixing with freezing media (LCL culture media + 5% DMSO), 1 million cells per vial. Cells were also preserved for RNA,

DNA, and protein extraction (see below).

Primary fibroblast cultures
Our protocol for generating primary skin fibroblast cultures from a skin biopsy is based on Vangipuram et al.59 From adults (18+ years

of age) at the NIHClinical Center we obtained two 4-mmskin punch biopsies from the upper arm, whichwere immediately placed into

a 15 mL conical tube with 10 mL of media (DMEM/F12 (Gibco), 20% FBS, and 100 IU/mL Penicillin-Streptomycin. Tubes were ship-

ped to the Page lab overnight on ice for processing. Each biopsy was used to generate a separate skin fibroblast culture. Biopsies

were cut into 18 pieces of equal size and placed 3/well in gelatinized 6-well plates with 1 mL media (High Glucose DMEM (Gibco),
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20% FBS, L-Glutamine (MP Biomedicals), MEM Non-Essential Amino Acids (Gibco), 100 IU/mL Penicillin/Streptomycin (Lonza)).

Plates were gelatinized by incubating 1 mL sterile 0.1% gelatin (Sigma) solution per well for 30 min at room temperature.

Plates were incubated for 1 week at 37�Cwithout disturbance to allow biopsies to attach to the plate and begin to grow out. During

week 2, we added 200 mL of fresh media per well every 2-3 days, being careful not to disturb the biopsies. The following week (week

3), we aspirated the media and replaced with 1 mL fresh media per well every 2-3 days. During week 4, we aspirated the media and

replaced with 2 mL fresh media per well every 2-3 days. At this point, the fibroblasts generally reached the edges of the wells and

were expanded to two T75 gelatinized flasks per 6 well plate. After two days, we combined the cells from the two T75 flasks and split

them to three T175 gelatinized flasks. After two days, cells were viably frozen with 1 million cells per vial in freezing media (fibroblast

culturemedia + 5%DMSO). Cells were also preserved for RNA extraction (see below). During optimization of the protocol, cell culture

purity was confirmed by immunofluorescence of SERPINH1, a fibroblast marker.

Cell collection for subsequent analysis
Cells were collected when LCL cultures reached 30mL, and fibroblasts were�80% confluent in three T175 plates. All cell countingwas

performedusing theCountess II cell counter (Life Technologies) andTrypanBlueexclusion.Cultureswith>85%cell viabilitywereused in

subsequent experiments. To preserve cells for subsequent RNA extraction, 1 million cells were washed in PBS, pelleted, and resus-

pended in 500 mL TRIzol (Invitrogen) or 200 mL RNAprotect Cell Reagent (Qiagen). Cell suspensionswere then frozen at�80�C. Cell cul-
tures were maintained at low passage number; RNA-sequencing experiments were performed on samples at or below passage 4.

Periodically, and on each passage used for experiments, cell cultures were confirmed negative for mycoplasma contamination

using either the MycoAlert Kit (Lonza) following the manufacturer’s instructions, or PCR using SapphireAmp Fast PCR Master Mix

(Takara) and the following primers:

Myco2(cb): 50 CTTCWTCGACTTYCAGACCCAAGGCAT-30

Myco11(cb): 50 ACACCATGGGAGYTGGTAAT-30

PCR for GAPDH was performed on the same sample, using the following primers:

hGAPDH-F: TGT CGC TGT TGA AGT CAG AGG AGA

hGAPDH-R: AGA ACA TCA TCC CTG CCT CTA CTG.

Known mycoplasma positive and negative samples were used as a reference.

RNA extraction, library preparation, and sequencing
RNAwas extracted from1million cells per experiment using theRNeasyPlusMini Kit (Qiagen) following themanufacturer’s instructions,

with the following modifications: Cells in RNAprotect Cell Reagent were thawed on ice, pelleted, and lysed in buffer RLT supplemented

with 10mL b-mercaptoethanol per mL. For most samples, ERCC control RNAs were added to the lysate based on the number of cells:

10mLof1:100dilutionofERCCcontrolRNAswasaddedper1millioncells.The lysatewas thenhomogenizedusingQIAshreddercolumns

(Qiagen), and transferred to a gDNA eliminator column. All subsequent optional steps in the protocol were performed, and RNA was

eluted in 30 mL RNase-free water. RNA levels were measured using a Qubit fluorometer and the Qubit RNA HS Assay Kit

(ThermoFisher). Beforewe switched to the per-cell spike-in protocol, weprepared 18 samples inwhich ERCCcontrol RNAswere added

based on amount of RNA after isolation: 2 mL of a 1:100 dilution of ERCC control RNAswas added per 1 mg of RNA. These samples are:

#2237, 2245, 6312, 711, 4032, 706, 3429, 3430, 3442, 2690, 2703, 3107, 5297, 5566, 5755, 6029, 2547, and525.RNAquality controlwas

performed using the 5200 Fragment Analyzer System (Agilent); we consistently purified high-quality RNA with RNA integrity numbers

(RIN) near 10. We randomized the samples by karyotype into batches for RNA extraction, library preparation, and sequencing.

RNA sequencing libraries were prepared using the TruSeq RNA Library Preparation Kit v2 (Illumina) with modifications as detailed

in Naqvi et al,60 or using the KAPA mRNA Hyper-Prep Kit V2 (Roche). In both cases, libraries were size selected using the PippinHT

system (Sage Science) and 2% agarose gels with a capture window of 300-600 bp. Paired-end 100x100 bp sequencing was per-

formed on a HiSeq 2500 or NovaSeq 6000 (Illumina). Table S1 lists the library preparation kit and sequencing platform for each

sample.

RNA-seq data processing and analysis
All analyses were performed using human genome build hg38, and a custom version of the comprehensive GENCODE v24 transcrip-

tome annotation.52 This annotation represents the union of the ‘‘GENCODE Basic’’ annotation and transcripts recognized by the

Consensus Coding Sequence project.61 Importantly, the GENCODE annotation lists the PAR gene annotations twice – once on

Chr X and once on Chr Y– which complicates analysis. We removed these annotations from Chr Y so the PAR genes are only listed

once in our annotation, on Chr X. To analyze samples in which ERCC spike-ins were added, we merged our custom transcript anno-

tation with the ERCC Control annotation.

Reads were pseudoaligned to the transcriptome annotation, and expression levels of each transcript were estimated using kallisto

software v0.42.5.54 We included the ‘‘–bias’’ flag to correct for sequence bias. The resulting count data (abundance.tsv file) were

imported into R with the tximport package v1.14.062 for normalization using DESeq2 v1.26.0.55 For downstream analysis, we

used only protein-coding genes (as annotated in ensembl v104) with the following exceptions: we included genes annotated as pseu-

dogenes on Chr Y that are members of X-Y pairs (TXLNGY, PRKY) and well-characterized long non-coding RNAs (lncRNAs) involved

in X-inactivation or other processes (XIST, JPX, FTX, XACT, FIRRE, TSIX). We annotated genes distal to XG, which spans the
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pseudoautosomal boundary on Xp and is truncated onChr Y, as part of PAR1 - 15 genes in total. PAR2 comprised the fourmost distal

genes on Xq and Yq. Annotations of non-pseudoautosomal region of the X (NPX) genes with homologs on the non-pseudoautosomal

region of the Y (NPY) were derived from Bellott et al.63 224 protein-coding genes on Chr 21 (ensembl v104) were used as a starting

point for our analyses. We excluded 21 annotated genes in several regions with high homology between the long and short arms of

Chr 21 because the assembly was not fully validated in these regions (https://www.ncbi.nlm.nih.gov/grc/human/issues?

filters=chr:21).

Identifying genes affected by changes in chr X, Y, or 21 copy number
Wefirst defined lists of expressed NPX, NPY, PAR, or Chr 21 genes as thosewithmedian TPMof at least 1 in 46,XX or 46,XY samples.

To ensure that no genes with robust expression were excluded, we also analyzed LCL and fibroblast expression data from GTEx,53

and included several genes that were just below our TPM cutoff but had median TPM of at least 1 in those datasets.

For each expressed NPX, NPY, or PAR genewe performed linear modeling using the lm() function in R. These calculations suppose

that each additional chromosome adds a consistent and equal increment to the total expression level of the gene in question.

For NPX and PAR genes we used the following equation:

E = b0 + bXð#chrXiÞ+ bYð#chrYÞ+ bBðbatchÞ+ ε

E represents the expression (read counts) per gene, b0 represents the intercept, bX and bY are the coefficients of the effect

of additional copies of Chr Xi or Y, respectively, and ˛ is an error term. For this equation, the intercept represents the 45,X

samples.

For NPY genes we employed the following equation, analyzing only those samples with one or more copies of Chr Y:

E = b0 + bXð#chrXiÞ+ bY ð#chrY � 1Þ+ bBðbatchÞ+ ε

For this equation, the intercept represents the 46,XY samples.

For Chr 21 genes we employed the following equation, analyzing only those samples with 46,XX; 46,XX; 47,XY,+21; or 47,XX,+21

karyotypes:

E = b0 + b21ð#chr21 � 2Þ+ bSexðSexÞ+ bBðbatchÞ+ ε

b21 and bSex are the coefficients of the effect of an additional copy of Chr 21 and sex (XY vs XX), respectively. For this equation, the

intercept represents the 46,XX samples.

The resulting p values were adjusted for multiple hypothesis testing using the p.adjust() function in R, specifying the Benjamini

Hochberg method. Genes with a false discovery rate (FDR) < 0.05 were considered significant. To compute the normalized expres-

sion change per Chr Xi (DEX) or Y (DEY), we divided the coefficient of interest (bX or bY ) by the average intercept across batches, which

corresponds to the baseline expression of the gene in samples with only one X chromosome (for NPX and PAR genes) or one Y chro-

mosome (in the case of NPY genes). For Chr 21, we computed DE21 by dividing the coefficient (b21) by the average intercept across

batches divided by two to obtain the average expression from one copy of Chr 21.

DEX =
bX

b0

DEY =
bY

b0

DE21 =
b21

b0=2

In the case of XIST, which is only expressed when two or more copies of Chr X are present, we used the following equations:

DEX =
bX

b0 + bX

DEY =
bY

b0 + bX

We calculated the standard error (SE) of DEX, DEY, and DE21 using the following equations:
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To confirm the validity of our approach, we used bootstrapping to sample our dataset with replacement 1000 times and

obtained similar results. BEX1 was removed from downstream analyses in fibroblasts because two samples (one 45,X and one

49,XXXXY) had high expression values for this gene resulting in >25 times higher error values for DEX and DEY compared to all other

genes.

Saturation analysis for sex chromosome-encoded genes
For LCLs and fibroblasts, size-n subsets of available RNA-seq libraries were sampled randomly without replacement, 100 times for

each sample size, n. After confirming that the model matrix would be full rank in each sampling (for example, that samples would not

all be of the same karyotype or batch), we performed linear modeling on NPX, PAR, NPY, and Chr 21 genes as described above to

identify genes whose expression changes significantly (FDR < 0.05) with copy number of Chr X, Y or 21.
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Assessing linearity of sex-chromosome gene expression changes
To assess whether sex-chromosome gene expression changed linearly (i.e., by a fixed amount) with additional X or Y chromosomes,

their expression levels across the LCL or fibroblast samples were fit by non-linear least squares to the power curves shown below,

using the ‘‘nlsLM’’ function from the R package ‘‘minpack.lm’’.

NPX genes:

y�j = 1 + bðxcountj � 1Þa;where y�j =
yj
yk

PAR genes:

y�j = 1 + bðxcountj + ycountj � 1Þa;where y�j =
yj
yk

NPY genes:

y�j = 1 + bðycountj � 1Þa;where y�j =
yj
yk

In each of the equations above, y�j is the normalized RNA-seq read count for a given gene in sample j, given by the raw read

count in sample j divided by the average read count in the set of samples Sf$g with only one chromosome of the relevant type: for

NPX genes, 1 copy of Chr X (and any number of Y chromosomes); for PAR genes, 45,X samples; for NPY genes, 1 copy of Chr Y

(and any number of X chromosomes). b = 0:5 and a = 1 were used as initial parameter values. Fitted values of az1 indicate a

linear relationship between expression and sex-chromosome count. Fitted values of az0 or bz0 indicate no change in expression

with X or Y count.

DEX calculations in samples with 0 Y chromosomes (females) and 1 Y chromosome (males)
We took subsets of the samples with either zero Y chromosomes (females) and with one Y chromosome (males) and performed the

same linear modeling andDEX calculations as above.We removedMAP7D2 in female LCLs, IL13RA2 in female fibroblasts, and FHL1

in male fibroblasts because their error values (likely due to smaller sample size) were much higher than those of other genes. To

compare the linear modeling results, we performed Pearson correlations between the results using all samples, and those from

male-only or female-only samples.

Reanalysis of array data and comparison to RNA-seq data
A previous study performed gene expression analysis, using Illumina oligonucleotide BeadArrays, of LCLs from 68 individuals of the

following karyotypes: 45,X; 46,XX; 46,XY; 47,XXX; 47,XXY; 47,XYY; and 48,XXYY.24 Since this microarray dataset was generated

from an independent set of samples, we sought to validate our results through a reanalysis of the data.

The raw data from themicroarrays was not publicly available, but the authors provided us pre-processed data upon request, which

we used to perform our analysis. To identify genes that cleared a minimum signal threshold to be considered expressed in the micro-

array data, we assessed the median signal in 46,XY samples for all Chr Y genes annotated on the microarray. We focused on Chr Y

genes in this analysis because many are known to be expressed exclusively in testes, and therefore could provide us with an appro-

priate sense of the background signal expected for genes not expressed in LCLs. From this analysis, we concluded that a signal

threshold of 111 would be appropriate for identifying expressed genes (Figure S9A). We used this threshold to identify 278 expressed

Chr X genes (including PAR and NPX genes) in the microarray dataset. This was fewer than the 341 expressed Chr X genes identified

in our LCL RNA-seq data, but more than double the 121 expressed Chr X genes reported in Raznahan et al. (Table S4 in Raznahan

et al.).24 This discrepancy could not be resolved by simply increasing the signal threshold in our analysis, as TMSB4X, one of themost

highly expressed genes in LCLs, was excluded from the previously reported list of expressed genes.

Using our list of 278 expressed genes from the Raznahan et al. dataset, we analyzed the microarray signal values (in place of RNA-

seq read counts) using linear models as a function of Xi copy number, controlling for Chr Y copy number. We calculated DEX values

from the microarray data and compared these to our RNA-seq dataset using a Pearson correlation, which revealed that the results

were generally concordant (Figure S9B). For genes that were lowly expressed, however, DEX values tended to be much lower in the

microarray dataset, consistent with the higher sensitivity of RNA-seq data.

Isoform-specific analysis of RNA-seq data
After estimating counts for each transcript using kallisto software (as described above, with 100 bootstraps), we used sleuth

v0.30.0 to normalize those transcript counts.56 X chromosome transcripts were called expressed if their corresponding gene

was on the list of expressed genes (above) and median transcript counts were >200. Linear regressions and DEX calculations

for transcripts were performed as for genes (above) to identify transcripts whose abundance changes significantly with additional

copies of Chr X.

The following ENCODE datasets were used for visualization in IGV software58 at the UBA1 locus.
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Assay Cell type Cell line Karyotype Accession

CTCF

ChIP-seq

LCL GM12878 46,XX ENCFF644EEX

GM12864 46,XY ENCFF070FTG

Fibroblast AG09309 46,XX ENCFF233THH

AG10803 46,XY ENCFF080HIA

CTCF

ChIA-PET

LCL GM12878 46,XX ENCFF80PGS

ENCFF847QOE
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Gene constraint analysis
To investigate sensitivity to a reduction in gene dosage, we used threemetrics: LOEUF, RVIS, and pHI.We downloaded LOEUF (loss-

of-function observed/expected upper fraction) scores from gnomAD (v2.1.1.lof_metris.by_gene.txt; https://gnomad.broadinstitute.

org/), and only used scores with a minimum of 10 expected LoF variants. Updated RVIS (residual variation intolerance scores)36

including the ExAC dataset were downloaded from http://genic-intolerance.org/data/RVIS_Unpublished_ExAC_May2015.txt. Up-

dated probability of haploinsufficiency (pHI) scores37 were downloaded from https://www.deciphergenomics.org/files/downloads/

HI_Predictions_Version3.bed.gz. To complement these data, we obtained a list of geneswith observed homozygous loss-of-function

variants.35 For sensitivity to an increase in gene dosage, we used the per-gene average probability of conserved miRNA targeting

scores (PCT).
38

For each metric, we computed a percentile rank score, ranking from most-to least-constrained. Because several of the metrics

calculated scores separately for autosomal (including PAR genes) and NPX genes, we ranked autosomal (and PAR) genes separately

from NPX genes. All annotated genes, regardless of expression status in LCLs or fibroblasts, were included in the rankings, with the

following exceptions: 1) NPX genes previously annotated as ‘‘ampliconic’’,64,65 since constraint metrics cannot be accurately applied

to these highly similar genes, and 2) genes with <2 annotations across all metrics.

To obtain an aggregate sense of a gene’s expression constraint across multiple metrics, we calculated the average. Among NPX

genes, we considered those with |DEXR 0.1| (FDR < 0.05) to bemost likely to contribute to phenotypes mediated by Xi copy number,

prioritizing the top ten genes by the average gene-constraint metric. For PAR1 genes, we prioritized genes with an average gene

constraint percentile ranking of at least 50%. To assess the phenotypic roles of highly constrained genes, we annotated them for

disease phenotypes with known molecular basis from Online Mendelian Inheritance in Man (OMIM).66

Comparisons to published annotations of X-inactivation status
We re-compiled XCI status annotations of individual genes from four studies of Chr X allelic ratios.14–16,18 Previous XCI status

compilations9 incorporated DNA methylation data, which we excluded because it does not directly measure Xi transcription. Previ-

ous compilations also incorporated information about expression in human-rodent hybrid cell lines carrying a human Xi13; we incor-

porated this information only where allelic ratios in human cells were not available. Our final XCI status annotations are listed in

Table S6, with the workflow for generating these annotations explained below.

The first dataset that we incorporated was derived from paired genomic and cDNA SNP-chips in skewed LCL and fibroblast cell

cultures (Additional file 7 from Cotton et al.).14 We used the AR values provided (average Xi expression column) for genes informative

in at least 5 samples, resulting in AR values for 424 genes. Using the provided numbers of informative samples and standard devi-

ations of AR values, we computed 95% confidence intervals for the AR values. We considered a gene ‘‘Subject’’ to XCI if the AR 95%

confidence interval included zero or the AR value was <0.1; otherwise we considered the gene to ‘‘Escape’’.

The second dataset that we incorporated was derived from bulk or single cell RNA-seq of LCLs.15 The bulk RNA-seq was from an

individual in the GTEx dataset with 100% skewed XCI across the body (Table S5 from Tukiainen et al.).15 The single-cell RNA-seq in

LCLswas from three individuals (Table S8 from Tukiainen et al.; we excluded data from one dendritic cell sample).15 For each dataset,

we calculated an AR for each gene using read counts from the more lowly and highly expressed alleles in each sample, and used the

provided adjusted p-values to identify genes with significant Xi expression (padj < 0.05). For a gene to be considered informative, we

required data from at least two individuals in the single cell dataset, or one individual in the single cell dataset and informative in the

bulk RNA-seq dataset, resulting in 82 informative genes. We called a gene as ‘‘Subject’’ to XCI if there was no significant expression

from Xi in either the bulk or single-cell datasets, and ‘‘Escape’’ if one or both of the datasets showed evidence of Xi expression.

The third dataset that we incorporated was derived from single-cell allelic expression in fibroblasts.16 The dataset includes five

individuals (Dataset 3 from Garieri et al.)16 and we required data from at least two samples to be considered informative for a given

gene, resulting in 203 genes. We converted their reported values (Xa reads/total reads) to AR values using the following formula:

AR = 1
Xa reads
total reads

� 1. We used the AR threshold calculated in the previous study16 to consider a gene significantly expressed from Xi

in each sample (AR > 0.0526). If a gene had no samples with significant expression from Xi or a mean AR value < 0.1 across samples,

we considered it ‘‘Subject’’ to XCI; otherwise, it was judged to ‘‘Escape’’ XCI.

The fourth dataset that we incorporated was derived from allele-specific bulk RNA-seq performed on 136 samples with skewed

XCI from the set of GEUVADIS LCLs (Tables S4 and S5 from Sauteraud et al.).18 For a gene to be considered scorable, we required
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that it be informative in at least 10 samples, resulting in 215 genes. We calculated an AR for each gene in each sample using the read

counts from the more lowly and highly expressed alleles in each sample, adjusting for the level of skewing in each sample. To identify

genes that were significantly expressed from Xi across samples, we performed paired, two-sample, one-sided t tests using the t.test

function in R, asking whether the raw (pre-adjusted for skewing) AR values were greater than the baseline AR given the level of skew-

ing in each sample (baseline AR = 1� skewing coefficient
skewing coefficient ); we corrected the resulting p values for multiple comparisons with the p.adjust

function in R using the Benjamini-Hochberg method. Genes were considered ‘‘Escape’’ if they had padj < 0.01, and ‘‘Subject’’

otherwise.

Next, we synthesized the calls from these four datasets. We assigned a gene as ‘‘Subject’’ if: 1) all studies were ‘‘Subject’’ or 2)

most (>50%) studies were ‘‘Subject’’ and the average AR across all studies was <0.1. We assigned ‘‘Escape’’ if 1) most (>50%)

studies were ‘‘Escape’’ or 2) 50% or fewer (but more than 0) studies were ‘‘Escape’’ and either i) there was more than one study

with evidence of escape or ii) the average AR across all studies wasR1. Finally, we assigned ‘‘No call’’ if the gene was not informative

in any of the four datasets. For these genes, we investigated whether there were any calls using hybrids from Carrel et al.13

as compiled in Balaton et al.9 If a gene had no call in any of the four ARdatasets, but had a proportion of expression in Xi hybrids <0.22,

we considered the gene ‘‘Subject’’; genes with a greater proportion were called ‘‘Escape.’’

To compare our calls with previous XCI consensus calls, wemade the following modifications to the Balaton list: XG had been listed

as a PAR gene, but we excluded it from our list of PAR genes because it is located at the PAR boundary and truncated on the Y chro-

mosome. We updated its annotation to escape (‘‘E’’) since the Balaton table lists evidence for escape. The Balaton table lists XIST as

‘‘mostly subject’’ to XCI, but given its exclusive expression from Xi, we updated its status to escape (‘‘E’’). We manually examined all

genes on our list that were not found in the Balaton list tomake sure that geneswere notmisclassified due to differences in official gene

names. For those genes still not present in the Balaton list after this correction, we list ‘‘No call’’. To compare with our annotations, we

grouped the Balaton calls into ‘‘Escape’’ if they were annotated as ‘‘PAR’’, ‘‘Escape’’, ‘‘Mostly escape’’, ‘‘Variable Escape’’, ‘‘Mostly

Variable Escape’’, or ‘‘Discordant’’. We grouped Balaton calls into ‘‘Subject’’ if they were annotated as ‘‘Mostly subject’’ or ‘‘Subject’’.

We compared our new calls with the Balaton calls for the 423 genes expressed in fibroblasts or LCLs, finding 48 where they

differed. Of these, nine had a call in Balaton, but no call in the newer datasets. For two genes (TCEAL3, TMSB4X), there was no

call in Balaton, but newer data enabled a call to be made (both ‘‘Subject’’). Nineteen genes were called ‘‘Subject’’ in Balaton, but

new data indicates that they have expression from Xi and we categorize them as ‘‘Escape.’’ The final eighteen genes were called

‘‘Escape’’ in Balaton, but new data suggested they have no expression from Xi. In total, our classification found 86 genes that

‘‘Escape’’, 315 genes that are ‘‘Subject’’ to XCI, and 22 genes with ‘‘No call.’’

Allele-specific expression analysis
This workflow is diagrammed in Figure S13.

SNP calling

We called SNPs in each RNA-seq sample with two X chromosomes (46,XX, 46,XX,+21, 47,XXY, 48,XXYY) following the Broad Insti-

tute’s ‘‘Best Practices’’ workflow for identifying short variants in RNA-seq data (https://gatk.broadinstitute.org/hc/en-us/articles/

360035531192-RNAseq-short-variant-discovery-SNPs-Indels-). To perform our skewing analysis, we filtered for SNPs with the

following properties: 1) annotated in the dbSNP database, 2) located in an exon of an expressed gene, 3) displaying a minimum

coverage of 10 reads, and 4) heterozygous with at least three reads mapping to each of the reference and alternative alleles. We

excluded SNPs where the presence of two alleles likely represented technical artifacts rather than biallelic expression, including

in WASH6P (SNPs map to multiple near-identical autosomal paralogs), ATRX (SNP in a mutation-prone stretch of Ts), and APOOL

(SNPs within an inverted repeat). For samples with a copy of Chr Y, we excluded SNPs mapping to PAR genes, to avoid measuring

allelic contributions of Chr Y.

Identifying cell lines with skewed X chromosome inactivation

We classified genes as ‘‘Xa only’’ (only expressed from Xa) if previously characterized as ‘‘silenced’’ and found here to have

DEX < 0.05 (FDR > 0.5); see Table S6. We expect that in skewed cell lines, reads from Xa-only genes should be near or completely

monoallelic (Figure S12). For each SNP in Xa-only genes, we calculated the ‘‘skewing coefficient’’ by dividing the number of reads

from the dominant allele by the total number of reads covering the SNP (Figure S14). These coefficients range from 0.5 (equal expres-

sion of two alleles) to 1 (expression from a single allele). For each sample, we computed the median skewing coefficient across all

SNPs in Xa-only genes, requiring a threshold of 0.8 to classify as skewed. Using simulations, we find that this level of skewing is un-

likely to occur by chance (P < 1x10�6), and we do not find evidence of such skewing for SNPs on Chr 8, an autosome with a similar

number of expressed genes (Figure S16).

Several samples had few (%5) informative SNPs in Xa-only genes, but many SNPs in other genes (Figure S15). We interpret this to

mean that these samples are highly skewed and that we do not observe enough RNA reads covering both alleles to count SNPs in Xa-

only genes as informative. Between these highly-skewed samples and the samples with skewing coefficients of at least 0.8, we iden-

tified 21 LCLs and 10 fibroblast cultures with skewed XCI.

Determining allelic ratios for X chromosome genes

After identifying the skewed cell lines, we identified genes with informative SNPs values in at least three skewed samples of a given

cell type. We then computed the allelic ratio (AR) at each informative SNP by dividing the number of reads from the more lowly
e8 Cell Genomics 3, 100259, February 8, 2023

https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035531192-RNAseq-short-variant-discovery-SNPs-Indels-


Article
ll

OPEN ACCESS
expressed allele by the number of reads from the more highly expressed allele. In cell cultures that are partially skewed, genes will

appear more biallelic than in completely skewed cell cultures since there are two populations of cells with different active X chromo-

somes present – the ‘‘major’’ and ‘‘minor’’ cell populations. Using our skewing estimates, we adjusted the AR on a per-sample basis

using the following formula:

AR =
AR -- AR � t -- t
1 � t � AR � t

Where t is the estimated percentage of cells in the ‘‘minor’’ population (i.e., with the other X chromosome active compared to the

‘‘major’’ cell population), calculated by: 1 – skewing coefficient. For highly-skewed samples, we were unable to calculate a stringent

skewing coefficient due to too fewSNPs, sowe set skewing coefficient = 1. As a result, it is possible that allelic ratios in these samples

may be slightly overestimated if the skewing coefficients are in fact <1. Within each sample, we obtained the average AR for each

gene by averaging across all informative SNPs in that gene’s exons (Figure S17; Table S6) and then calculated the mean AR across

skewed samples to obtain a final per-gene AR estimate (Table S6).

To assess whether AR values for each gene were significantly greater than zero, we performed one-sided t tests using the t.test

function in R, asking whether the AR values were greater than zero; we corrected the resulting p values for multiple comparisons with

the p.adjust function in R using the Benjamini-Hochberg method (Table S6). We also repeated this analysis excluding highly skewed

samples, since the skewing coefficients cannot be stringently determined. This removed some informative genes but did not signif-

icantly affect the AR values (Figure S19; Table S6).

To identify genes whose AR and DEX values differ significantly, we performed one-sample, two-sided t tests for the AR values

across samples, setting mu = DEX (Table S6). We selected genes with Benjamini-Hochberg adjusted p values < 0.1 as having signif-

icantly different AR and DEX values. From this list we excluded genes for which the 95% confidence interval of DEX values (1.96*SE)

included the mean AR value, and those for which both DEX and AR were not significantly different from zero (FDR R 0.05).

We compared our AR values derived from LCLs or fibroblasts with the four published allelic-ratio datasets described in the above

methods on generating XCI status calls (Figure S18).

QUANTIFICATION AND STATISTICAL ANALYSES

Various statistical tests were used to calculate p values as indicated in themethods section, figure legend, or text, where appropriate.

Results were considered statistically significant when p < 0.05 or FDR<0.05 whenmultiple hypothesis correction was applied, unless

stated otherwise. Data are shown as median and interquartile range, unless stated otherwise. All statistics were calculated using R

software, version 3.6.3.67
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